
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4815

j

A11103 7tiQail

NationalPDES Testbed

Report Series

TESTBED tm;

The NIST PDES
Toolkit: Technical

Fundamentals

Eevised April, 1992

Stephen Howland Clark

Donlihesi

J
i-QC—
I 100

i.U56

' 4815

:
1992

1

92

NationalPDES Testbed

Report Series

Sponsored by:

U.S. Department of Defense

CALS Evaluation and NATION^
-m. Txr^n-!

Integration Office ^ 1 ine iNiDi i LJiio

g Toolkit: Technical

Fundamentals

Revised April, 1992

Stephen Nowland Clark

Don Libes

The Pentagon

Washington, DC 20301-8000

U.S. Department of Commerce

Barbara Hackman. Franklin,

Secretary

Technology Administration

Robert M. White,

Undersecretary for Technology

National Institute of

Standards and Technology

John W. Lyons, Director

April 3, 1992

.

.,V>' fv 'v

'A'-'^'., p’
.

, \

•-'9?.

mi
‘'i''

(.• ;

mi'' '

- -• .•.'' • -,' '

':
-'-S '

-
,- 5,-,

’

Tlfcr ,

•
.

- -

'Uf ,

•y .-'

i'lt!S '

3':

I
. ^

• 'f'--^^y'\ '^'C

.

;
.

'If J'\h-\
-

.'^'v

. "yM-:. :mm
^^W“4.u3e:is

fi’i^

15a

'

i

i%21

mi

Table of Contents

Table of Contents

1 Introduction 1

1.1 Context ..1

1 .2 Development Environment and Tools 2

2 Structure of the Toolkit 2

2.1 Conventions 3

2.2 Object-Oriented Framework Modules: Class and Obj ect 4

2.3 A Note on Memory Management and Garbage Collection 4

3 Compiling With the Toolkit: The Makefile Template 4

3. 1 STEPparse STEP Translators 5

3.2 Fed-X Express Translators 6

3.3 Other Applications 6

4 Basic Libraries 7

4. 1 The Library of Miscellany: 1 ibmi sc.

a

7

4.1.1 Boolean 8

4.1.2 Class 8

4.1.3 Dictionary 10

4.1.4 Dynamic 11

4.1.5 Error 12

4.1.6 Hash 15

4. 1 .7 Linked List 16

4.1.8 Object 17

4.1.9 Stack 20

4.1.10 String 21

4.1.11 Error Codes 23

4.2 The Bison Support Library: 1 ibbison .a 24

4.3 BSD Unix Dynamic Loading: libdyna .a 25

A References 26

B The Makefile Template 27

page Mi

m

•).

t

.' ... '.U- •

* i /f A ,

.?'< s *, •

r ,rf:/.TrT.. V-.

'
j.'

' '
'

f' ",
’'- •'

.y .vv/,

.

ifc^« • • <

? *
• « •

i • « ' V t
•

C- .

'

, .

f •'

' . .

T .

•8

M

• « A?* «_*»»- .4
f.'

•''V' . V.^
‘ - • ‘ .

• .V .
.
,<!' A

'. .7_. AK?!

*> ».4-

OF .

H..

••-,, -'A.: -

;

,
_.

•

._
.

•

'I^i v -

''‘rF '!*?

...IC''--* «

: I

yir...

fl

,

oc

('. .,1 i.A^-

,^,.,

..I, ••>.;, .vioifci’

A.'
f'.'

'

l.l ,'

'•' ,''.
.

.,;.,.„*..:-pi-..>,*y'.’.'.jV. V...

,. »•?•-,•* rt>' •
.- - • 1

^'
' f •

* '.V flX . .

'/.
. .

-. ..:j|'. 'h I,

,/4 M*** »••! •• *«•'

- 4 I
• kf>*^*-* •*•

.
• *fy '

^.•

t.V’A
’ '

'"S

-M I-*.. ';
. ''r

i',-. V i

4 '/I'i

The NIST PDES Toolkit:

Technical Fundamentals

Stephen Nowland Clark

Don Libes^

1 Introduction

The NIST PDES Toolkit [Clark90a] provides a set of software tools for manipulating

Express [Parti 1] information models and STEP [Part21] product models. It is a re-

search-oriented toolkit, intended for use in a research and testing environment. This

document gives a technical introduction to the Toolkit, providing a programmer with

basic knowledge of its structure. Also covered are the mechanics of building TooUdt-

based applications.

In addition to describing the stmcture and usage of the Toolkit, we describe three fun-

damental code libraries which it includes. The most significant of these, libmisc . a,

contains various modules of general utility, including such abstractions as linked lists

and hash tables, libbison . a is a small library containing support routines and glo-

bal variables for the Toolkit’s parsers. The third library, libdyna . a, provides a dy-

namic (run-time) loading facility for a . out format object files under BSD 4.2 Unix

and its derivates.

1.1 Context

The PDES (Product Data Exchange using STEP) activity is the United States’ effort in

support of the Standard for the Exchange of Product Model Data (STEP), an emerging

international standard for the interchange of product data between various vendors’

CAD/CAM systems and other manufacturing-related software [Mason91]. A National

PDES Testbed has been established at the National Institute of Standards and Technol-

ogy to provide testing and validation facilities for the emerging standard. The Testbed

is funded by the Computer-aided Acquisition and Logistic Support (CALS) program of

the Office of the Secretary of Defense. As part of the testing effort, NIST is charged

with providing a software toolkit for manipulating STEP data. This NIST PDES Tool-

kit is an evolving, research-oriented set of software tools. This document is one of a set

of reports that describe various aspects of the Toolkit. An overview of the Toolkit is

provided in [Clark90a], along with references to the other documents in the set.

1. Don Libes is responsible for the minor changes made to this document to track the actual implementation

of the software described. However, credit for the bulk of the document, its style, and the implementation of

the NTST PDES Toolkit remain with Stephen Nowland Clark. Recent changes are denoted by a change bar

to the left of the text.

The NIST PDES Toolkit: Technical Fundamentals Page 1

For further information on the Toolkit, or to obtain a copy of the software, use the at-

tached order form.

1.2 Development Environment and Tools

The NIST PDFS Toolkit is implemented in ANSI Standard C [ANSI89]. All software

has been developed on Sun Microsystems Sun-S^*^ and Sun-4TM workstations running

the Unix™ operating system. The parsers are written in Yacc and Lex, the standard

UnixTM languages for generating parsers and lexical analyzers. The development com-

piler for the Toolkit is GCC, the GNU Project’s^ C compiler, and the parsers are com-

piled by Bison, the GNU Project’s implementation of Yacc. The lexical analyzers are

compiled by Flex^, a Public Domain implementation of Lex. Rules for building the

Toolkit are specified using the Unix Make utility.

2 Structure of the Toolkit

The NIST PDFS Toolkit consists of the Fxpress [Clark90b] and STFP [Clark90c]

Working Forms, and several applications which make use of these Working Forms.

The Working Forms reside in object libraries, which can be linked into applications

which use them.

In addition to the various design and usage documents referenced elsewhere, technical

reference manuals on the Fxpress [Clark90d] and STFP [Clark90e] Working Forms are

also available.

The Toolkit distribution may be installed anywhere on a particular filesystem. For sim-

plicity, the root directory of the distribution is referred to as ~pdes/ throughout the

technical documentation. This root directory contains a number of subdirectories of in-

terest, which we now describe. Brief descriptions also appear in ~pdes /README.

The directories ~pdes/bin/, ~pdes/include/, and ~pdes/lib/ contain, re-

spectively, Toolkit application binaries, C header (, h) files for the Toolkit libary mod-

ules, and the Toolkit object libraries (. a files) themselves. PostScript® and/or ASCII

versions of the Toolkit documentation can be found in ~pdes / docs /. Various utility

tools which are needed to build or run pieces of the Toolkit are in ~pdes/etc/. Fi-

nally, the directory -pdes/src/ contains the source code for the Toolkit libraries.

There is a separate subdirectory for each library. This src/ directory also includes a

subdirectory called Template/, which includes a Makefile template which can be

used as a model when building new applications which use the Toolkit.

1. The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,

whose ultimate goal is to provide a free implementation of the Unix operating system and environment.

These tools are not in the Public Domain; rather, FSF retains ownership and copyright privileges, but grants

free distribution rights under certain terms. At this writing, further information is available via electronic mail

on the Internet from gnu(S)prep.ai.mit.edu

2. Vem Paxson’s Fast Lex is usually distributed with GNU software, although, being in the Public Domain,

it is not an FSF product and does not come under the FSF licensing resuictions.

Page 2 Toolkit Basic Libraries

Stephen Nowland Clark

2.1 Conventions

Each Working Form is composed of a number of data abstractions. Each of these ab-

stractions is implemented as a separate module. Modules share only their interface

specifications with other modules. For example, consider a module called Foo, com-

posed of two C source files, foo . c and foo . h. The former contains the body of the

module, including all non-inlined functions. The latter contains function prototypes for

the module, as well as all type and macro definitions. In addition, global variables are

defined in foo . h. These declarations are made using the following macros:

#ifdef FOO_C

define GLOBAL
define INITIALLY(v) = v/* historical */

define INITIALLYl (vl) = {vl}

define INITIALLY2 (vl , v2) = {vl, v2

}

define INITIALLY3 (vl , v2 , v3) = (vl, v2 , v3

}

/* the rest (up to 10) omitted */

#else

define GLOBAL extern

define INITIALLY(v) /* historical */

define INITIALLYl (vl

)

define INITIALLY2 (vl , v2

)

define INITIALLY! (vl , v2 , v3

)

/* the rest omitted */

#endif FOO_C

GLOBAL int FOO_GLOBAL_INT INITIALLYl (4)

;

This allows the same declarations to be used both in foo . c and in other modules

which use it: when foo . h is included in foo . c, FOO_GLOBAL has storage declared

and is initialized. When foo . h is included elsewhere, an uninitialized extern dec-

laration is produced.

Finally, foo . h contains inline function definitions. If the C compiler supports inline

functions (as GCC does), these are declared static inline in every module which

includes foo . h, including foo . c itself. Otherwise, they are undefined except when

included in foo . c, when they are compiled as ordinary functions.

The type defined by module Foo is named Foo. Access functions are named as

FOOfunction () ; this function prefix is abbreviated for longer abstraction names, so

that access functions for type Foolhardy_Bartender might be of the form

FOO_BARfunction () . Some functions may be implemented as macros; they are

not distinguished typographically from other functions, and are guaranteed not to have

unpleasant side effects like evaluating arguments more than once. These macros are

thus virtually indistinguishable from functions. Functions which are intended for inter-

nal use only are named FOO_function () ,
and are usually static as well, unless

this is not possible. Global variables are often named FOO_variable; most enumer-

ation identifiers and constants are named FOO_CONSTANT . For example, every ab-

The NIST PDES Toolkit: Technical Fundamentals Page 3

straction defines a constant FOO_NULL, which represents an empty or missing value of

the type.

There are, of course, exceptions to all of these rules. The global variable and enumer-

ation identifier rules are the most frequently broken. Library modules which were de-

veloped before all of the rules solidified, as well as components which were not

developed locally by the Toolkit project, tend to stretch the rules more than the actual

Working Form modules, which have tended to be more dynamic later in the project.

2.2 Object-Oriented Framework Modules: Class and Obj ect

Most of the Working Form abstractions are implemented on top of the Class and Object

modules defined in libmisc. Together, these modules provide a simple object-ori-

ented framework on which various abstractions can be built. The Class module manip-

ulates representations of classes in the object-oriented sense, defining management

operations for classes of values and representing sub- and supertype relationships be-

tween these classes. The Object module supports instantiation of these classes. It ac-

tually performs the management operations specified by an Object’s class, and

interprets the class hierarchy defined by a set of sub- and supertype relationships be-

tween classes.

2.3 A Note on Memory Management and Garbage Collection

In reading various portions of the Toolkit technical documentation, one may get the im-

pression that some reasonably intelligent memory management is done. This is not en-

tirely true. The NIST PDFS Toolkit is primarily a research tool. This is especially true

of the Express and STEP Working Forms. The Working forms allocate huge chunks of

memory without batting an eye, and this memory often is not released until an applica-

tion exits. Hooks for doing memory management do exist (e.g., OBJfree () and ref-

erence counts), and some attempt is made to observe them, but this is not given high

I
priority in the current implementation.

3 Compiling With the Toolkit: The Make file
Template

The file ~pdes/src/Template/Makef ile (reproduced in Appendix B) in the

Toolkit distribution is a skeletal Makefile which can be configured to build a wide

variety of applications which use one or both of the Working Forms. This Make file
uses a number of macros and mles which are defined in

~pdes/include/make_rules. It assumes that the source code for the applica-

tion to be built resides in ~pdes/src/<appl>/.

The following sections discuss the various classes of applications which can be built,

and the appropriate configuration for the Makefile. There are several macros de-

fined in the Makefile which are used to configure an application. The most impor-

tant, in that it determines how the application will use the Working Form(s), is called

LIBS. This macro is defined in the section of the Makefile entitled "Library Selec-

Page4 Toolkit Basic Libraries

Stephen Nowland Clark

tion," which contains a number of possible definitions. Each option is preceded by a

comment describing the situation in which it is appropriate; exactly one definition

should be uncommented. Next, two options are given for the CFLAGS macro: one for

STEP applications and one for applications which use only Express. This is not a nec-

essary distinction, since things will always build correctly with the former definition; it

is provided for the benefit of those who (like the author) prefer possibly inordinate neat-

ness.

There are two macros which can be used to specify the auxiliary object (. o) files and

libraries (. a files) required by the application. Object files should be named in the

OFILES macro; several sample definitions are included for the applications provided

with the toolkit. The macro MYLIBS can contain any additional libraries which are re-

quired by the application.

In addition to the fundamental configuration options discussed above, there are several

more macros which can be used to make "cosmetic" changes to an application. At the

top of the Makefile is a macro called CC, which selects the C compiler to be used.

Common options are /bin/cc (the vendor-supplied compiler under Unix) and

$ (GCC), which should point to the Gnu Project’s C Compiler. The contents of

MY_CFLAGS are passed to every invocation of $ (CC

)

; this is the place to add debug-

ging and/or optimization flags, for example. The default rule for compiling . c files

(from ~pdes/include/make_rules) probably should not be changed, but it ap-

pears in the template to provide a hook for unforeseen requirements. Finally, toward

the end of the Makefile is a macro called PROG. This macro holds the name of the

executable which will be built.

The Makefile provides three targets: $(PROG) rebuilds the application from

scratch, as necessary. The relink target assumes that all . o files and libraries are up-

to-date, and simply relinks the application. This is useful, for example, when one of the

Toolkit libraries has been rebuilt, but the application source itself has not been changed.

The last target, clean, removes $ (PROG) and $ (OFILES). This rule may be mod-

ified for a particular application. Any additional rules which are required to build the

application can be added at the end of the Makefile.

3.1 STEPparse STEP Translators

The first class of applications which we examine are the STEP translators. These pro-

grams parse a STEP Physical File into the STEP Working Form and then invoke one or

more report generators which traverse these data structures and produce output files

containing some or all of the product model represented in a different format.

The Make macro $ (STEP_LIBS) expands to list all of the libraries needed to create

a STEP translator. These include: libstep . a and libexpress . a, the STEP and

Express Working Form libraries; libmisc.a and libbison.a; and libl.a,
which provides support for lexical analyzers produced by Lex. The first four are locat-

ed in ~pdes/lib/, while libl . a is normally found in /usr/lib/. The order in

which these libraries are listed is significant: libstep and libexpress both in-

clude definitions ofmain () , the standard entry point to a C program. To build a STEP

The NIST PDES Toolkit: Technical Fundamentals Page 5

translator, the first definition ofmain () which the linker finds must be the STEPparse

driver, which is in libstep . a.

In addition to these libraries, two more pieces of code are needed to build a complete

translator: a report generator and a linkage mechanism for this report generator. The

latter is needed because the translator can load its report generator(s) in either of two

ways: it can load a specific one at compile time, or it can dynamically load one or more

at run time. The dynamic approach has at least two major advantages: It allows multi-

ple output formats to be produced by a single executable; and it allows several reports

to be created by a single run of the translator, so that the parsing phase need only be

executed once. This approach has the unfortunate disadvantage that it is (currently)

only available under BSD 4.2 Unix and its derivates; it is therefore considered optional

in the current incarnation of the Toolkit.

In the library selection section of the Make f i 1 e, the first two options are alternate def-

initions of LIBS for building a STEP translator. The first is for a translator with a sin-

gle, statically bound report generator. Since the static linkage facility is included in

libstep . a, the linkage mechanism is not explicitly listed. The second alternative,

for a translator with dynamically bound report generators, selects

~pdes/lib/step_dynami c . o to provide the run-time linking mechanism. In ad-

dition, it adds libdyna . a to the link.

If a dynamically loading translator is being built, then no report generator object file

should be listed in the OFILES macro, since the report generator will be selected at run

time. The first sample definition of OFILES is appropriate here. If a report generator

is being loaded at build time, then any object files which are needed to implement it

should be listed in this macro.

3.2 Fed-X Express Translators

The process of configuring the Makefile to build an Express translator is similar to

that described for STEP translators. The $ (EXP_LIBS) macro expands to the list of

libraries needed to build a Fed-X translator; these include the same libraries listed in

$ (STEP_LIBS) , with the exception of 1 ibs tep . a. Again, there are two possible

definitions of LIBS. The first selects a build-time (static) linkage (which is included

in libexpress . a); the second adds ~pdes/lib/express_dynamic . o and -

1 dyna for run-time (dynamic) linkage.

As in the case of a STEP translator, a dynamically bound Express translator requires no

object files in $ (OFILES) , while a statically bound translator expects to find the re-

port generator in this macro. The first sample definition of OFILES can again be used

in the former case.

3.3 Other Applications

We now turn to the more free-form applications which might make use of the Express

and/or STEP working forms. A notable difference between these applications and the

translators is that the programmer must define the flow of control, by providing

main () . As mentioned above, both the STEP library and the Express library include

Page 6 Toolkit Basic Libraries

Stephen Nowland Clark

definitions of main () which are used to drive the respective translators; source code

for these can be found in ~pdes/src/step/step . c and

~pdes/src/express/fedex , c, respectively. These might serve as useful start-

ing points for other applications. In general, the first two passes of the Express parser

(EXPRESSpass_l () and EXPRESSpass_2 (

)

) will have to be run in any applica-

tion, unless a conceptual schema is to be built by hand. EXPRESSpass_3 () invokes

a report generator via the selected linkage mechanism. The call which invokes the

STEP parser is STEPparse (

)

;
this is the simplest way of budding an instantiated

STEP model. A STEP report generator is invoked by calhng STEPreport () ; unfor-

tunately, Express and STEP report generators and associated linkages currently cannot

coexist in a single executable. This restriction is not due to anything fundamental, and

so may disappear should there be sufficient demand.

Assume for the moment that no STEP or Express report generators are needed. In this

case, it is quite simple to configure the Makefile to use one or both of the Working

Form(s): First, set LIBS to either $ (STEP_LIBS) or $ (EXP_LIBS) , depending on

which Working Form is needed (remember that the former includes the latter, so that it

is never necessary to use both macros at once). These are the last two sample defini-

tions in the library selection section. Next, in OFILES and MY_LIBS list the object

files and libraries which the application uses. Bear in mind that the application’s

main () must appear in $ (OFILES) in order to override the default one which will

otherwise be found in one of the Working Form libraries. Finally, be sure to set PROG
to the name of the application which will be built.

We now return to the problem of an application which will use a STEP or Express re-

port generator without being just a translator. A main () must be provided for this ap-

plication and included in the OFILES macro, just as in the previous case. What gets

messy is the library selection. To use a Fed-X report generator in an application which

uses only the Express working form, or to use a STEPparse report generator in a STEP
application, just select the appropriate LIBS macro for a translator with the same report

generator linkage, one of the first four sample definitions. To build an application

which produces Fed-X reports while using the STEP working form, choose either the

static or the dynamic binding option from the section "STEP applications with Express

report generators" in the Makefile template. This will select the full set of STEP li-

braries, and pull in the specified Fed-X output linkage.

4 Basic Libraries

This section discusses the three basic libraries in the Toolkit. Portions of the libraries

are discussed in varying levels of detail, according to the level of code reuse from other

sources (who may or may not provide additional documentation).

4.1 The Library of Miscellany: libmisc . a

This library contains various modules which are used throughout the Toolkit. The ab-

stractions in most common use are String, Linked_List, Dictionary, and Error. Other

modules in this library are Stack, Dynamic, and Hash. The object library is

The NIST PDES Toolkit: Technical Fundamentals Page 7

found in~pdes/lib/libmisc , a, and the sources can be

~pdes/src/libmisc/ (.h files in ~pdes/include/).

The file ~pdes/include/basic .h includes various simple definitions: a

typedef Boolean, as an enumeration of { false, true); a Generic pointer

type; MAX and MIN macros, etc. It is included by every source file in the Toolkit.

Only error codes unique to each routine, are listed after each description.

4.1.1 Boolean

In almost all cases, booleans are manipulated as primitives by the C runtimes. One ex-

ception exists - printing.

Procedure: BOOLprint

Parameters: Boolean

Returns: String

Description: despite its name, this function returns a string describing the boolean.

4.1.2 Class

A Class encapsulates meta-data about a class of similar data objects. It includes various

generic manipulation functions and information about how instances of the class are ar-

ranged in memory.

Type: Constructor

Definition:

Description:

void (*)(Generic)

The constructor function for a class initializes the block of class-specific data for an

instance of the class. It does not allocate storage for the block itself.

Type:

Definition:

Description:

Copier

void (*)(Generic, Generic)

The copier function for a class copies a block of class-specific data for an instance of

the class into a second such block.

Type:

Definition:

Description:

Comparator

Boolean (*)(Generic, Generic)

The comparator function for a class compares the blocks of class-specific data from
two instances of the class; it returns false if the blocks are considered unequal and true

otherwise.

Type:

Definition:

Description:

Destructor

void (*)(Generic)

The destructor function for a class releases the various class-specific components ofan

instance of the class. It does not release the data block itself.

Type:

Definition:

Description:

Printer

void (*)(Generic)

The printer function for a class prints an object instance in a format specific to the

class. Its primary use is for debugging.

Page 8 Toolkit Basic Libraries

Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

CLASS create

String name - name of new class

Class super - parent of new class

Constructor create - constructor for instance data

Copier copy - copy method for instance data

Comparator compare - comparison method for instance data

Destructor delete - destructor for instance data

Printer print - printer for instance data

Error *errc - buffer for error code

Class - the newly created class

Creates and returns a new class.

CLASS create_dataless

String name - name of new class

Class super - parent of new class

Error *errc - buffer for error code

Class - the newly created class

Creates and returns a new dataless class. A dataless class has no instance data slot of

its own, and so does not require a constructor, destructor, copier, or comparator.

CLASSget_comparator

Class class - class to examine

Comparator - the comparator for the class

Retrieves a class’ instance data comparison method.

CLASSget_constructor

Class class - class to examine

Constructor - the constructor for the class

Retrieves a class’ instance data constructor.

CLASSget_copier

Class class - class to examine

Copier - the copier for the class

Retrieves a class’ instance data copy method.

CLASS get_destructor

Class class - class to examine

Destructor - the destructor for the class

Retrieves a class’ instance data destructor.

CLASSget_name

Class class - class to examine

String - the name of the class

Retrieves a class’ name.

CLASS get_size

Class class - class to examine

int - size of class’ instance data slot

Retrieves the size (in bytes) of a class’ instance data.

The NIST PDES Toolkit Technical Fundamentals Page 9

Procedure: CLASSget_slot

Parameters:

Returns:

Description:

Class class - class to examine

int - slot number of class

Retrieves the slot number in which a class’ instance data is stored. Note that this is a
constant for a given class.

Procedure:

Parameters:

Returns:

CLASSget_superclass

Class class - class to examine

Class - the class’ immediate superclass

Procedure:

Parameters:

CLASS inherits_from
Class child - the class whose ancestry is to be tested

Class parent - the hypothetical parent class to search for

Returns:

Description:

Boolean - Is the parent class in the child’s superclass chain?

Determine whether a class (the child) is a descendant of a particular class (the parent).

This function reports true in the degenerate case where parent == child.

4.1.3 Dictionary

A Dictionary consists of a naming function and a homogeneous collection. The collec-

tion is ordered alphabetically according to the items’ names, as reported by the naming

function. The current implementation of this module makes no claim to efficiency: it

is simply a wrapper around the Linked List module. Entries are added by insertion sort,

and retrieval is by linear search.

Type: Naming_Function

Deflnition:

Description:

String (*)(Generic)

This is the type of the function which a Dictionary expects to use to retrieve the name
of one of its entries.

Procedure:

Parameters:

DICTadd_entry

Dictionary dictionary - dictionary to modify

String name - string to be used as key

Generic entry - entry to be added

Error* errc - buffer for error code

Returns:

Requires:

Description:

Generic - the added entry, or NULL on failure

Entry is of an appropriate type for the dictionary’s naming function.

Adds an entry to a dictionary, provided that the dictionary does not yet contain a

definition for the entry’s name (as given by the dictionary’s naming function).

Errors: ERROR_dupl icate_entry - An entry with the given name already appears in the

dictionary. In this case, entry is set to the original entry.

Procedure:

Parameters:

DICTcreate

Naming_Function func - the naming function to be used by the new dictionary

Error* errc - buffer for error code

Returns:

Description:

Dictionary - the newly created dictionary

Creates an empty dictionary. Entries will be sorted according to the strings they

produce when passed to the naming function given in this call. Thus, iteml will

precede itein2 exactly when strcmp { func (iteml) , func (item2)) < 0.

Page 10 Toolkit Basic Libraries

Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

DICTinitialize

“ none --

void

Initialize the Dictionary module.

Procedure:

Parameters:

DICTlookup

Dictionary dictionary - the dictionary to look in

String name - the name to look for

Returns:

Description:

Generic - the entry whose name matches that given

Looks up a name in a dictionary. If no matching entry can be found, NULL is returned.

Procedure:

Parameters:

Returns:

Description:

DICTdo
— none --

Generic (whatever kind of object was stored previously)

Successive calls of this function return each element of the dictionary, named in the

previous call to DICTdo_initO. When no more objects remain, OBJECT_NULL is

returned.

Procedure:

Parameters:

Returns:

Description:

DICTdo_init

Dictionary dictionary

void

This function names the dictionary to be traversed by following calls of DICTdo (see

that function for more infomation).

Procedure:

Parameters:

Returns:

Description:

DICTprint

Dictionary

void

prints the contents of a dictionary. Exactly what is printed can be controlled by setting

various elements of the variable dict_print.

Procedure:

Parameters:

DICTremove_entry

Dictionary dictionary - the dictionary to modify

String name - the name of the entry to remove

Returns:

Description:

Generic - the entry removed

Removes the named entry from a dictionary, and returns this entry to the caller. If no
entry with the given name can be found, NULL is returned.

4.1.4 Dynamic

This module puts a clean wrapper on the routines in libdyna .a (see section 4.3).

Only two calls are provided.

Procedure: DYNAinit

Parameters:

Returns:

Description:

“ none --

void

Initializes the dynamic loading module. This must be called with argv in scope, as it

is actually a macro which examines argv [0] . Alternatively, call

DYNA_init (String me) , whose single parameter should be argv [0] . This

method is not recommended, but will work in situations where, for some reason, the

value of argv [0] is available while argv itself is not.

The NIST PDES Toolkit: Technical Fundamentals Page 11

Procedure:

Parameters:

Returns:

Description:

DYNAload
String filename - the name of the object file to load

void (*)() - the loaded file’s entry point

Loads the named object file into the currently running image, and performs symbol
relocation as necess^. The entry point to the file is returned as a pointer to a function

of no arguments which returns void. If an error occurs during the loading process, it

is reported to stderr and NULL is returned as the entry point.

4.1.5 Error

Error reporting throughout the Toolkit is managed by the Error abstraction. This mod-

ule was not present in the initial Toolkit design; rather, it has grown in response to needs

which have appeared over the course of the Toolkit’s development. Some of the spec-

ifications and behavior thus seem contrived. The Error module allows subordinate rou-

tines to report error conditions to their callers, and allows the callers to strongly

influence the form of the message reported to the user. In order to do this, the caller is

trusted to test for and report error conditions. A caller who breaches this tmst is asking

for trouble, since it is the act of actually reporting the error which gives control of the

program to the Error module, allowing it to take appropriate steps (such as halting the

program on a fatal error).

Modules which may wish to report error conditions create instances of type Error at

initialization time. Routines which may report errors then expect a pointer to an error

buffer as a parameter, declared by convention as the last parameter. Error* errc.

On exit, this buffer will contain either ERROR_none, indicating successful comple-

tion, or some error code. The caller may then report the error, filling in the necessary

blanks in the format specification (see below), attempt to recover, or simply ignore it

(realizing that ignoring any but the most innocuous errors will most likely lead to trou-

ble later on).

An Error has two main components. The severity of an error indicates how serious the

error is. A warning may be reported to the user, but is not really considered an error.

Continuing past a warning, or even 100 warnings, should cause no serious problems.

An error, on the other hand, must be noted by the program: The program need not halt

immediately, but at some point in the future, it will become impossible to proceed. An
error of "exit" severity causes the program to exit immediately, as gracefully as possi-

ble. An error of "dump" severity causes the program to dump core and exit immediate-

ly. All of these actions are taken only when the error is reported (with

ERRORreport ()), rather than when the error is discovered.

The other component of an error is its text. This is a print f-style format string,

whose arguments wiU be filled in when the error is reported. For example, the text for

ERROR_memory_exhausted is "Out of memory allocating %d for %s." When this

error is reported, the amount of memory requested and its intended purpose should be

provided by the programmer:

ERRORreport (ERROR_inemorY_exhausted,

block_size, "file buffer block");

I
For specifications of the Errors defined in 1 ibmi s c . a, see section 4. 1 . 1 1

.

Page 12 Toolkit Basic Libraries

Stephen Nowland Clark

For greater flexibility in error reporting, Errors can be enabled and disabled individual-

ly. Disabled errors which are given to ERRORreport () will be ignored, just as ER-
ROR_none is.

An alternate routine for reporting errors is ERRORreport_with_line () , which

inserts a line number indication at the beginning of a message. Particularly when line

numbers are included, it may be useful to sort error messages before printing them.

This can be done by asking that error messages be buffered. When this message buffer

is flushed, its contents are sorted according to the third column, which is where ER-
RORreport_with_line (

)
puts the line number. This feature is used in the second

pass of Fed-X, for example, where the Express Working Form data structures are

walked in the most convenient order, which bears little resemblance to the order in

which the original constructs appeared in the source file. Any error messages encoun-

tered are buffered, and all are sorted and flushed after the entire pass is complete, re-

sulting in sensibly ordered output

Type:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Severity

This type is an enumeration of SEVERITY_WARNING, SEVERlTY_ERROR,
SEVERITY_EXIT, SEVERITY_DUMP, and SEVERITY_MAX (which is guaranteed

to be the highest possible severity of any error).

ERRORabort
— none -

does not return

provides a way of aborting the pro^am when an unusual error occurs such as an

internal Fed-X error that should be investigated. If ERRORdebugging is true, control

is returned to the debugger, else an image of the program is dumped (core) and the

program is aborted.

In all cases, pending messages are flushed.

ERRORbuffer_messages

Boolean flag - to buffer or not to buffer

void

Selects buffering of error messages. Buffering is useful when error messages are

produced by ERRORreport_with_l ine () , as it allows the messages to be sorted

according to line number before being displayed.

Note that this should be called with parameter false at program termination.

ERRORclear_occurred_flag

“ none --

void

Clear the flag which is used to remember whether any errors have occurred.

The NIST PDES Toolkit; Technical Fundamentals Page 13

Procedure:

Parameters:

ERRORcreate

String message - message to print for error

Severity severity - severity of error

Error* errc - buffer for error message

Returns:

Description:

void

Create a new error. The meanings of the various severity levels are as follows;

SEVERITY_WARNING indicates that a warning message should be generated. This

will not interfere with later operation of the program. SEVERlTY_ERROR produces
an error message, and the fact that an error has occurred will be remembered (e.g., so

that no reports will be generated). SEVERITY_EXIT indicates that the error is fatal,

and should cause the program to exit immediately. SEVERITY_DUMP causes the

program to exit imm^ately and produce a core dump. SEVERITY_MAX is

guaranteed to be the highest severity level available. The message string may contain

print f -style formatting codes, which will be filled when the message is printed.

Variable:

Type:

Description:

ERRORdebugging

Integer

If true, serious errors trap back to the debugger. If false, the program is aborted with

a core dump.

Procedure:

Parameters:

Returns:

Description:

ERRORdisable

Error error - the error to disable

void

Disable an error, so that the ERRORreport calls will ignore it.

Procedure:

Parameters:

Returns:

Description:

ERRORenable

Error error - the error to enable

void

Enable an error, ensuring that the ERRORreport calls will report it.

Procedure:

Parameters:

Returns:

Description:

ERRORflush_messages
“ none -

void

Flushes the error message buffer to the standard output, sorted by line number (the

third column).

Despite the name, ERRORbuffer_messages(false) should be called at program
termination rather than this function, since it has the unfortunate side-effect of creating

a new message buffer. (This should be changed.)

Variable:

Type:

Description:

ERROR_from_file

char *

Defines the name of the file used by the error printing routines.

Procedure:

Parameters:

Returns:

Description:

ERRORhas_error_occurred

— none --

Boolean - has an error occurred?

Check whether any errors (severity >= SEVERITY_ERROR) have occurred

since the flag was last cleared.

Procedure:

Parameters:

Returns:

Description:

ERRORinitialize

— none -

void

Initialize the Error module. If not explicitly called, this is nonetheless called when
necessary. Thus, it can safely be ignored, but is included for completeness.

Page 14 Toolkit Basic Libraries

Stephen Nowland Clark

Procedure: ERRORis_enabled

Parameters: Error error - the error to test

Returns: Boolean - is reporting of this error enabled?

Procedure: ERRORreport

Parameters: Error what - the error to report

... - arguments for error suing

Returns: void

Description: Report an error, taking action appropriate for i

should match the format codes in the message

Procedure: ERRORreport_with_line

Parameters: Error what - the error to report

int line - line number of error

... - arguments for error string

Returns: void

Description: Report an error, including a line number. Otherwise identical to ERRORreport (

)

4.1.6 Hash

The Hash module emulates Unix’s hsearch (3)
package with dynamic hashing. The

module header reads, in part:

Dynamic hashing, after CACM April 1988 pp 446-457,
by Per-Ake Larson.

Coded into C, with minor code improvements, and with
hsearch(3) interface,

by ejp@ausmelb . oz , Jul 26, 1988: 13:16;

The code was downloaded from the Internet, and modified significantly in order to sup-

port hash table traversal, hash table copying, entry deletion, detecting duplicate entries

or removal of nonexistent entries.

Note that all entries in the hash table are shallow copies.

Type:

Description:

Action

This type is an enumeration of HASH_FIND, HASH_INSERT.

Type:

Description:

Element

The entries in a hash table are stored as Elements. An Element has a char* (string)

key, a char* data field, and a next pointer.

Procedure:

Parameters:

Returns:

Description:

HASHcopy
Hash_Table

Hash_Table

A new table is return that is a duplicate of the original table. The objects in the table

are shallow copied.

Procedure:

Parameters:

Returns:

Description:

HASHcreate

unsigned count - estimated maximum number of table elements

Hash_Table - the new hash table

Creates a new, empty hash table.

The NIST PDES Toolkit: Technical Fundamentals Page 15

Procedure;

Parameters:

Returns:

Description:

HASHdestroy

Hash_Table table - the table to be destroyed

void

Destroys a hash table, releasing all associated storage.

4.1.7

Procedure:

Parameters:

Returns:

Description:

HASHlist

- none --

Element

Successive calls of this function return each element of the hash table, named in the

previous call to HASHlist_init(). When no more objects remain, NULL is returned.

Procedure:

Parameters:

Returns:

Description:

HASHlist_init

Hash_Table

void

This function names the hash table to be traversed by following calls of HASHlist (see

that function for more infomation).

Procedure:

Parameters:

Returns:

Description:

HASHsearch

Hash_Table table - the table to search

Element item - the item to search for/insert

Action action - the action to take on the search item

Element - the result of the action

If action is HASH_INSERT, element is inserted if new. If duplicate, NULL is

returned.

If action is HASH_FIND, element is returned, or NULL if no such element exists.

If action is HASH_DELETE, element is returned, or NULL if no such element exists.

Linked List

The Linked List abstraction represents heterogeneous linked lists. Each element of a

list is treated as an object of type Generic; any object which can be cast to this type

can be stored in a list. Note that the programmer must provide a mechanism for deter-

mining the type of an object retrieved from a list: this module maintains no such t5^e

information.

Type: Link

Description: Each element of a linked hst is stored as a Link, which has next and prev pointers

and a Generic data field.

Procedure:

Parameters:

Returns:

Description:

LISTadd.all

Linked_List list - list to modify

Linked_List items - list of items to add

void

Add the contents of items to the end of list.

Procedure:

Parameters:

Returns:

Description:

LISTadd_first

Linked_List list - list to modify

Generic item - item to add

Generic - the item added

Add an item to the front of a list.

Procedure: LISTadd_last

Parameters: Linked_List list - hst to modify

Page 16 Toolkit Basic Libraries

Stephen Nowland Clark

Returns:

Description:

Generic item - item to add

Generic - the item added

Add an item to the end of a list.

Iterator:

Usage:

LISTdo ... LISTod

Linked_List list;

LISTdo(list, <variable_name>, <type>)

process_value(<variable_name>);

LISTod;

Description: The macro pair LISTdo () . . . LISTod ; are used to iterate over a list, type is a C
language type; variable is declared to be of this type within the block bracketed by
these two macros, variable is successively assigned each value on the list, in turn.

Procedure:

Parameters:

Returns:

LISTempty

Linked_List list - the list to be tested

Boolean - true if and only if the list contains no elements

Procedure:

Parameters:

Returns:

Description:

LISTget_first

Linked_List

Generic

returns first element of list or NULL if no such element

Procedure:

Parameters:

Returns:

Description:

LISTget_second

Linked_List

Generic

returns second element of list or NULL if no such element

Procedure:

Parameters:

Returns:

Description:

LISTinitialize

— none —

void

Initialize the Linked_List module.

Procedure:

Parameters:

Returns:

Requires:

LISTpeek_first

Linked_List list - list to examine

Generic - the first item on the list

!LISTempty(list)

Procedure:

Parameters:

Returns:

Description:

LISTprint

Linked_List

void

prints the contents of a list. Exactly what is printed can be controlled by setting various

elements of the variable list_print.

Procedure:

Parameters:

Returns:

Description:

Requires:

LISTremove_first

Linked_List list - list to modify

Generic - the item removed

Remove the first item from a list and return it.

!LISTempty(list)

The NIST PDES Toolkit: Technical Fundamentals Page 17

4.1.8 Object

Together with the Class module, this module provides an object-oriented framework on

which class hierarcies with data inheritance can be built. One aspect of the Class/Ob-

ject representation deserves comment. An Object is represented as a header block and

a set of instance data slots. Each slot contains the instance data specific to a particular

class in the ancestry of the Object’s class. For example, if Cartesian_Point is a

subclass of Point, and Point is a subclass of Geometry, which has no superclass,

then an instance of Cartesian_Point will contain three slots. The first will contain

instance data for a generic Geometry object; the next will contain the data for a

Point object; and the last will contain the instance data which is specific to a

Cartesian_Point. The instance data required by a particular class, then, is always

found in the same slot: In the example above. Geometry data will always be found in

slotO, and Cartesian_Point data in slot 2. This slot number is recorded in the def-

inition of a Class. A call is provided to retrieve the instance data from a particular

Class’ slot in an Object (see OBJget_data ()
).

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

Description:

OBJbase_class_assertion

Object object

Class class

Boolean error_type - if error should be considered an internal error or a application

error

Boolean - true if assertion is true, else false

A pointer to a function supplied by the application. The function may be called by the

user or Fed-X internals when testing whether an object is of a given class. Presumably,

the function may issue diagnostics describing what class of object was encountered

and what was expected.

If the error type (ERROR_fedex, ERROR_user) indicates it is an internal Fed-X error,

ERRORabortO is called.

OBJbecome

Object old - object to replace definition of

Object new - object to replace with

Error* errc - buffer for error code

void

old != OBJECT_NULL
new != OBJECT_NULL
Replace an object with a new object. All references to the old object will refer to the

new object. This operation is not commutative: the old object is destroyed in the

process.

OBJcopy

Object object - the object to be duphcated

Error* errc - buffer for error code

Object - copy of object

Creates a duplicate (deep copy) of an object. The contents of each instance data slot

are copied using the corresponding class’ copy method.

Procedure: OBJcreate

Parameters: Class class - class of object to create

Error* errc - buffer for error code

Page 18 Toolkit Basic Libraries

Stephen Nowland Clark

Returns:

Description:

Object - the newly created object

Create a new object of a particular class. The contents of each instance data slot are

initialized using the corresponding class’ constructor.

Procedure:

Parameters:

OBJcreate_constant

Class class - class of object to create

Error* errc - buffer for error code

Returns:

Description:

Object - the newly created constant object

Create a new constant object of a particular class. A constant object cannot be
modified. The contents of each instance data slot are initialized using the

corresponding class’ constructor.

Procedure:

Parameters:

OBJequal

Object objectl - one object to compare

Object object2 - one object to compare

Error* errc - buffer for error code

Returns:

Description:

Boolean - are the objects equal?

Compares two objects and determines whether they are equal. The contents of

corresponding instance data slots are compared using the appropriate class’

comparison method.

Procedure:

Parameters:

OBJfree

Object object - the object to be freed

Error* errc - buffer for error code

Returns:

Description:

void

Releases (a reference to) an object. If possible (i.e., if there are no other references to

this object), all storage associated with the object may be released. The contents of

each instance data slot are freed using the corresponding class’ destructor.

Errors: ERROR_inanipulate_constant - the object to be freed is a constant

Procedure:

Parameters:

Returns:

Description:

OBJget_class

Object object - the object to examine

Class - the object’s class

Retrieves the object’s class.

Procedure:

Parameters:

OBJget_data

Object object - the object to examine

Class class - the class for which instance data is requested

Error* errc - buffer for error code

Returns:

Description:

Generic - instance data for object from the appropriate class

Retrieves a pointer to the instance data for an object, viewing the object as an instance

of a particular class.

Procedure:

Parameters:

Returns:

Description:

OBJinitialize

— none --

void

Initialize the Object module.

Procedure:

Parameters:

Returns:

Description:

OBJis_constant

Object object - the object to test

Boolean - is this object a constant?

Determine whether an object is a constant.

The NIST PDES Toolkit; Technical Fundamentals Page 19

Procedure: OBJis_kind_of

Parameters: Object object - the object to examine

Class class - the class to test for

Returns:

Description:

Boolean - is this object a member of the class?

Determines whether a particular object is an instance of a particular class or of any of
its subclasses.

Procedure:

Parameters:

Returns:

Description:

OBJprint

Object

void

Prints an object. Output is sent to stdout, unless redirected by calls to OBJprint_file.

Procedure:

Parameters:

Returns:

Description:

OBJprint_file

String filename

void

Names file to send further output from OBJprint. (char *
) 0 signifies stdout.

The struct Print provides additional control. Attributes are as follows:

header controls whether header information such as class names are printed. By
default, header is 1 meaning only the most specific class is described. 0 disables

class descriptions, while 2 forces aJl class descriptions to be printed. Class specific

data is printed after each class header.

depth_max controls the depth of object recursion. By default, the depth is 2.

Procedure:

Parameters:

Returns:

Description:

OBJreference

Object object - the object to be referenced

Object - reference to input object

Creates a reference (shallow copy) to an object

Procedure:

Parameters:

OBJspecialize

Object object - the object to be specialized

Class class - new class for object

Error* errc - buffer for error code

Returns:

Description:

Object - the specialized object

Specializes an object to be an instance of some subclass of its class. All references to

the old object will refer to the new object.

Errors: ERROR_subclass_required - the new class is not a subclass of the objecf s

current class. This error is reported locally, and ERROR_subordinate_failed
is propagated.

ERROR_manipulate_constant - the object to be specialized is a constant.

4.1.9 Stack

This module implements the classic LIFO Stack. It is implemented as a set of macros

wrapped around the Linked List abstraction. Stacks may be heterogeneous.

Procedure: STACKempty
Parameters: Stack stack - the stack to be tested

Returns: Boolean - is the stack empty?

Description: Returns true if stack is empty, else false.

Page 20 Toolkit Basic Libraries

Stephen Nowland Clark

Procedure: STACKinitialize

Parameters:

Returns:

Description:

— none -

void

Initialize the Stack module.

Procedure:

Parameters:

Returns:

Requires:

Description:

STACKpeek
Stack stack - the stack to peek at

Generic - the top item on the stack

!STACKempty(stack)

Peeks at the top of a stack, returning it without removing it from the stack.

Procedure:

Parameters:

Returns:

Requires:

Description:

STACKpop
Stack stack - the stack to pop

Generic - the top item on the stack

!STACKempty(stack)

Removes the top item from a stack and returns it to the caller.

Procedure:

Parameters:

Returns:

Description:

STACKprint

Stack

void

prints the contents of a stack. Exactly what is printing can be controlled by setting

various elements of the variable list_print (since the current implementation of a stack

is via a list.

Procedure:

Parameters:

Returns:

Description:

STACKpush
Stack stack - the stack to push onto

Generic item - the item to push

void

Pushes an item onto the top of a stack.

4.1.10 String

This module defines macros and functions for manipulating C strings. Some routines

provide special functionality, while others simply rename standard calls from the C li-

brary to fit the naming scheme of the Toolkit. The String type is a synonym for

char*.

Procedure: STRINGcompare

Parameters:

Returns:

Description:

String si - first comparison string

String s2 - second comparison string

int - measure of equality of strings

This is an alias for the standard C call strcmp () . The result is 0 when the two
arguments are equal, negative when si precedes s2 in lexicographical order, and
positive when si follows s2.

Procedure:

Parameters:

Returns:

Description:

STRINGcopy
String string - the string to copy

String - a deep copy of the argument

Allocates a String large enough to hold the (NUL-terminated) argument, copies the

argument into this String, and returns it to the caller.

The NIST PDES Toolkit: Technical Fundamentals Page 21

Procedure:

Parameters:

Returns:

Requires:

Description:

Procedure:

Parameters:

Returns:

I
Description:

Procedure:

Parameters:

Returns:

I
Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

Procedure:

Parameters:

Returns:

Description:

STRINGcopy_into

String dest - the destination string

String src- the string to be copied

dest

STRINGlength(dest) >= STRINGlength(src)

This is an alias for the C library call strcpy () . The source string is copied into the

destination string, which must be of equal or greater length.

STRINGcreate

int length - length of string to create

String - a new, empty string of at least the given length

Creates a new string.

STRINGdowncase_char

char c - the character to convert

char - the argument character, as lower case if it is a letter

Converts an uppercase character to lowercase.

STRINGequal

String si - first string for comparison

String s2 - second string for comparison

Boolean - are the two strings equal?

Compares two strings for value equality. This call is equivalent to strcmp (si,
s2) == 0.

STRINGfree

String string - the string to be released

void

Allows all storage associated with a string to be reclaimed. References to the string

may no longer be valid.

STRINGlength

String string - the string to measure

int - the actual length of the string, excluding the NUL terminator

This call is equivalent to strlen (string)

.

STRINGlowercase

String string - the string to convert

String - lowercased version of the argument

A new string is created and returned which contains the same value as the argument,

but with all letters replaced with their lowercase counterparts.

STRINGsubstring

String str - string to extract a substring from

int from - beginning index for substring

int to - ending index for substring

String - the specified substring

A new string is created and returned whose value is a particular substring of some
string. The index of the first character of a string is 0.

Page 22 Toolkit Basic Libraries

Stephen Nowland Clark

Procedure: STRINGupcase_char

Parameters:

Returns:

Description:

char c - the character to convert

char - the argument character, as upper case if it is a letter

Converts a lowercase character to uppercase.

Procedure:

Parameters:

Returns:

Description:

STRINGuppercase

String string - the string to convert

String - uppercased version of the argument

A new string is created and returned which contains the same value as the argument,

but with aU letters replaced with their uppercase counterparts.

4.1.11 Error Codes

This section specifies all of the Errors which are defined in libmisc .a. Note that

each is a global variable; storage is allocated for each by the module named.

Error: ERROR_duplicate_entry

Defined In:

Severity:

Meaning:

Format:

Dictionary

SEVERITY_ERROR
A name was duplicated in a dictionary

%s - the duplicated name

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_empty_list

Linked_List

SEVERITY_ERROR
Illegal operation on an empty list

%s - the context (function) in which the error occurred

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_free_null_pointer

Error

SEVERITY_DUMP
A NULL pointer was freed

%s - the name of the offending function

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_memory_exhausted

Error

SEVERITY_EXIT
A mal loc (2) request could not be satisfied

%d - number of bytes requested

%s - intended use for memory

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_none
Error

N/A
No error occurred. In another life, this might have been called ERROR_NULL. But
then, who knows?!

- none --

The NIST PDES Toolkit: Technical Fundamentals Page 23

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_not_implemented

Error

SEVERITY_EXIT
An unimplemented function was called.

%s - the name of the function

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_obsolete

Error

SEVERITY_WARNING
An obsolete function was called.

%s - the obsolete function name

%s - new name to use OR reference to replacement code OR "<No Replacement>"

Error:

Defined In:

Severity:

Meaning:

Format:

ERROR_subordinate_failed

Error

SEVERITY_ERROR
A subordinate function has failed and reported an error to the user. Useful when the

caller only needs to know that a problem has occurred. This error is not reported.

- none --

4.2 The Bison Support Library: libbison . a

I
The Bison support library is based on the standard Unix Yacc support library

libyacc.a., with modifications to support better error handling/reporting, imple-

mentation differences between Yacc and Bison (and also between Lex and Flex), and

more careful use of global variables, this latter to allow more than one Bison parser to

be linked into a single executable. The library is in ~pdes/ lib/ libbison . a, and

sources can be found in ~pdes/src/ libbison/.

The definitions ofyyerror () in yyerror . c and yywhere () in yywhere . c are

from [Schreiner85].

Several variable declarations in these two files had to be modifed for Bison/Flex pars-

ers. A documented difference between Lex and Flex is that the token buffer, yytext,
is declared as a char* in Rex and as a char [] in Lex. Also, Rex does not provide

Lex’s yyleng variable. Other variables which need to be declared extern in Bison

parsers so as not to collide when multiple parsers are linked together have storage allo-

cated in yyvars . c. This file also defines a function yynewparse () ,
which can be

used to restart a Bison parser.

A word on the ~pdes/etc/uniquify_* scripts. These csh scripts modify the

code produced by Yacc/Bison/Lex/Rex so that multiple scanners and parsers can coex-

ist in a single executable. For the most part, it is sufficient to change some global vari-

able declarations to be static. Each script strips any of several suffixes off of the

filename it is given to determine the actual name of the parser/scanner and then

prepends this name to type and function declarations which are externally visible.

Thus, a parser called expyacc .y ends up with the entry point exp_yyparse () , ex-

pects tokens of type exp_YYSTYPE, and calls exp_yylex () to get these tokens.

Similarly, a scanner called stepscan , 1 would provide step_yylex () as an entry

point, and would produce tokens of type step_YYSTYPE.

Page 24 Toolkit Basic Libraries

Stephen Nowland Clark

4.3 BSD Unix Dynamic Loading: 1 ibdyna . a

This package was retrieved from the Internet Authorship information seems to have

been lost The routines provided are at the level of reading a . out headers and walking

through symbol tables. We wiU not attempt to document this library; there are .doc
files in the source directory, ~pdes / src / 1 ibdyna/, which include examples of the

package’s use.

The NIST PDES Toolkit: Technical Fundamentals Page 25

A References

[ANSI89]

[Clark90a]

[Clark90b]

[Clark90c]

[Clark90d]

[Clark90e]

[Goldberg85]

[Mason 91]

[Monis90]

[Nickerson90]

[Part21]

[Parti 1]

[Schreiner85]

American National Standards Institute, Programming Language C .

Document ANSI X3. 159- 1989.

Clark, S. N., An Introduction to The NIST PDES Toolkit . NISTIR

4336, National Institute of Standards and Technology, Gaithersburg,

MD, May 1990.

Clark, S.N., Libes, D., Fed-X: The NIST Express Translator .

NISTIR 4822, National Institute of Standards and Technology,

Gaithersburg, MD, August 1990.

Clark, S.N., The NIST Working Form for STEP . NISTIR 4351,

National Institute of Standards and Technology, Gaithersburg, MD,
June 1990.

Clark, S.N., Libes, D., NIST Express Working Form Programmer’s

Reference . NISTIR 4814, National Institute of Standards and

Technology, Gaithersburg, MD, March 1992.

Clark, S.N., NIST STEP Working Form Programmer’s Reference .

NISTIR 4353, National Institute of Standards and Technology,

Gaithersburg, MD, June 1990.

Goldberg, A. and D. Robson, SmalltaIk-80: The Language and its

Implementation . Addison-Wesley, Reading, MA, July, 1985.

Mason, H., ed.. Industrial Automation Systems - Product Data

Representation and Exchange - Part 1: Overview and Fundamental

Principles . Version 9, ISO TC184/SC4/WG PMAG Document N50,

December 1991.

Morris, K.C., Translating Express to SOL: A User’s Guide . NISTIR

4341, National Institute of Standards and Technology, Gaithersburg,

MD, May 1990.

Nickerson, D., The NIST SOL Database Loader: STEP Working

Form to SOL . NISTIR 4337, National Institute of Standards and

Technology, Gaithersburg, MD, May 1990.

ISO CD 10303 - 2L Product Data Representation and Exchange -

Part 21. Clear Text Encoding of the Exchange Structure. ISO

TC184/SC4 Document N78, February, 1991.

ISO 10303-11 Description Methods: The EXPRESS Language

Reference Manual . ISO TCI84/SC4 Document N14, April 1991.

Schreiner, A.T., and H.G. Friedman, Jr., Introduction to Compiler

Construction with Unix . Prentice-Hall, Englewood Cliffs, NJ, 1985.

Page 26 Toolkit Basic Libraries

Stephen Nowland Clark

B The Make file Template

#

This is a Makefile template for translators and other applications
which use the Express and/or STEP Working Forms from the NIST PDES
Toolkit.
#

This software was developed by U.S. Government employees as part of
their official duties and is not subject to copyright.
#

Pick up default macros and rules
include . . / . . /include/make_rules

################################
Pick a C compiler ... any C compiler!
################################

#CC = $(Unix_CC)
CC = $(GCC)

################################
User-definable flags to CC

:

Put whatever you want in here!
################################

#MY_CFLAGS = -g -O
MY_CFLAGS = -g

################################
CC flags for Express and STEP
#

Use the first form for STEP applications.
Use the second if only Express is required.
################################

CFLAGS = $ (STEP_CFLAGS) $(MY_CFLAGS)
#CFLAGS = $ (EXPRESS_CFLAGS) $(MY_CFLAGS)

################################
Default rule to compile C source files
#

You probably shouldn't need to change this ...
################################

. c . o :

$(CC) $ (CFLAGS) -c $*.c

##
#

Library Selection
#

Select the first one of the following forms which describes your
application. For further discussion, see "The NIST PDES Toolkit:
Technical Fundamentals."
#

##

################################
STEPparse translators/applications:

with statically bound report generators
#LIBS = $(STEP_LIBS)

The NIST PDES Toolkit: Technical Fundamentals Page 27

with dynamically bound report generators
#LIBS = $ (PDESLIBDIR) step_dynamic . o $(STEP_LIBS) -Idyna

################################
Fed-X Express translators/applications:

with statically bound report generators
#LIBS = $ (EXPRESS_LIBS)

with dynamically bound report generators
#LIBS = $(PDESLIBDIR) express_dynamic . o $ (EXPRESS_LIBS) -Idyna

################################
STEP applications with Express report generators

statically bound
#LIBS = $(STEP_LIBS)

dynamically bound
#LIBS = $ (PDESLIBDIR) express_dynamic .o $(STEP_LIBS) -Idyna

################################
STEP application with no report generators

#LIBS = $(STEP_LIBS)

################################
Pure Express application with no report generators

#LIBS = $ (EXPRESS_LIBS)

##
List all of your object files here. If you are building a
translator which will dynamically load its report generators,
do not list any output modules here.
##

Object files for Fed-X or STEPparse translator with dynamically
loaded report generators
#OFILES =

Object files for STEPparse translator with STEP report
generator statically loaded
#OFILES = step_output_step .o

Object files for Fed-X translator with Smalltalk-80 report
generator statically loaded
#OFILES = output_smalltalk.o

##
List all of your libraries here
##

MYLIBS =

##
The name of the executable to build
##

PROG =

##
Here's the rule that builds the executable.

Page 28 Toolkit Basic Libraries

Stephen Nowland Claric

##

$ (PROG)

:

$ (OFILES)
$(CC) $(CFLAGS) -o $(PROG) $ (OFILES) $ (LIBS) $ (MYLIBS)

relink

;

$(CC) $(CFLAGS) -o $(PROG) $ (OFILES) $ (LIBS) $ (MYLIBS)

install

:

cp $(PROG) $ (PDESBINDIR)

clean

:

rm -f $ (OFILES) $(PROG) *. #*

##
Put any rules for building your object files here.
##

The NIST PDES Toolkit: Technical Fundamentals Page 29

'i t .

"
';i' # « ^f'M ••fif * » le-if'W'fl? .

^'P.TO ,.w " '
‘ ''• *"

'” £
'li;'X''ii|'^-^ttJ C 01

'

4i'3') 'r>

.-, 'j'5,,;' i^\'?yV4‘swo
'

, .'Xo 1.

, :J:N„ ^;ivu*te.i':'»xl'/'>''

'I *iv ii -k^mu-k^ ^ ||f

^ ij 'i" #..* iXM' « ' '•
!{ ,;%»»w '

' \^-x
/\v';'’i-'.' ":ij^%

'

«.;:r «a
'

'-if Oy ^V;•.^,^^.^S'i,.J.y

. X..

:.
.

.

'

t.:. , .;,.

V ,. '•V '... :\
'

• v:V.''4,,''5^Vi'^#' .'

;*
'.'J

'.'
’|i

''

•m:

,,;i; «^,'«.'‘j!iiV:.4i;^'

p'‘F't'..> i;ij.f#

:
I'fl;:/

''*;.
.•i'-

' •)

sail

NIST-114A U.S. DEPARTMENT OF COMMERCE
(REV. 3^) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1 4. TITLEAND SUBTITLE

The NIST PDES Toolkit: Technical Fundamentals

i 5. AUTHOR(S)

Stephen N. Clark, Don E. Libes

S. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST. SEE INSTRUCTIONS) 7. CONTRACT/GRANT NUMBER

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20898 8. TYPE OF REPORT AND PERIOD COVERED

1. PUBUCATION OR REPORT NUMBER
NISTIR 4815

2. PERFORMING ORGANIZATION REPORT NUMBER

PUBUCATION DATE
APRIL 1932

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE. ZIP)

Office of the Secretary of Defense
CALS Program Office
Pentagon
Washmgton, DC 20301-8000

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORO OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIRCANT BIBUOGRAPHY OR
LITERATURE SURVEY. MENTION IT HERE)

The Product Data Exchange using STEP (PDES) is an emerging standard for the exchange of product

information among various manufacturing applications. A software toolkit for manipulating PDES data has been

developed at the National PDES Testbed at NIST. A technical overview of this PDES Toolkit is provided.

Fundamental software libraries are described, and techniques for creating applications based on the Toolkit are

discussed.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

PDES; Product Data Exchange using STEP; product data exchange; PDES implementation tools; Standard for

the Exchange of Product Model Data; STEP

13. AVAILABILITY

UNUMITED

FOR OFFICUL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD,VA 22161.

14. NUMBER OF PRINTED PAGES

33

IS. PRICE

A03

ELECTRONIC FORM

' "
”1

••tUi-.. «>»iw/^\| v'..UH»y .
•''

• l•,.l)Muu/^;«^»,l«•,

M,. *t 1
.

'•

i
t n*THV**iiU»fV«-.-

,v}.

f-u

K.',

'^ii»i.nwi, ... ^ ’.'tMl.: W<n»jkWrW)«itffM W'-ai .*1 «•> Kfimi*- •

’'SL.' Si®

'W"

m%->'

;
.

„
,

.

" \ :.. .

lo !§?<> '?n| ^$^0''^^^' spaiitte''.'

; mir '

'' ' '
' ' '"' '

\
f'>&^v0Dq IT Mi^riX JiHOT Slifi

"

‘V‘

V
.-> 1"^:-» '\Jm

> . ^ ^I«r»«;<it«»«>%»i< r'»".. .. .iH-**.. ..

':;im

r^~ 'mKTmrnmmmtJn
£r

^
'«

'tf'iyp

ix-s; -V'-'V ^

